International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)

Balapur P.O., Hyderabad – 500005, Telangana, India

Self-cleaning Evaluation of Visible-light-driven Modified Titania for Textile Application

Overview

As part of visible-light active material developmental activity, highly visible light active photocatalysts, based on titanium dioxide nanostructure material containing carbon, C-TiO₂ core-shell nanoparticles by an in-situ Lyothermal process has been synthesized for photo catalytic self cleaning applications. Self-cleaning property of visible light photocatalysts incorporated fabric has been evaluated for the decomposition of gas phase acetaldehyde (CH3CHO) under visible-light illumination. Neither decrease in the concentration of CH₃CHO nor increase in the concentration of CO₂ is observed with commercial TiO₂. In contrast, complete decomposition of acetaldehyde observed for composite (TiO₂ with carbon nanoparticles) incorporated fabric under the illumination of indoor and outdoor light. The application of developed visible light active material could be extended to paint applications for the removal of VOCs.

Key Features

- A method of producing highly visible light active photocatalysts, C-TiO₂ core-shell nanoparticles by an in-situ Lyothermal process.
- Evaluation of photocatalytic self cleaning property of C-TiO₂ incorporated textile fabric for decomposition of volatile organic compounds (gaseous acetaldehyde).
- Photocatalytic performances of C-TiO₂ are on par with commercial visible-light driven photocatalysts for the decomposition of volatile organic compounds under UV, visible and solar light illumination

Potential Applications

- Self-cleaning Application (textile, paint) for the removal of volatile organic compounds
- Anti-bacterial (Hospital) application

Technology Readiness Level (TRL): 7

- ✓ Developed a simple, cost-effective and large scale process to synthesize visible-light active titanium dioxide nanostructure material containing carbon
- Successfully evaluated for evaluated prototype sample (C-TiO₂ incorporated textile fabric) for self-cleaning photocatalytic decomposition of gaseous acetaldehyde.

01	,	•	Ū	,	under outdoor light liiumination.				
1	2	3	4	5	6	7	8	9	10
Basic concepts and understanding of underlying scientific principles	Short listing possible applications	Research to prove technical feasibility for targeted application	Coupon level testing in stimulated conditions	Check repeatability/ consistency at coupon level	Prototype testing in real-life conditions	Check repeatability/ consistency at prototype level	Reassessing feasibility (IP, competition technology, commercial)	Initiate technology transfer	Support in stabilizing production

Status

IPDI* Activities

Major Patents / Publications

- Method of producing nanostructured C-TiO₂ composite material for visible light active photocatalytic self-cleaning applications, Indian Patent Application No. 201811011478 dated 28th March, 2018.
- 2. Efficient ZnO-based visible-light-driven photocatalyst for anti-bacterial applications" ACS Appl. Mater. Interf. 6, 13138-13148, 2014.

60 %

- Facile one step route for the development of in-situ co-catalyst modified Ti³⁺-self doped TiO₂ for improved visible-light photocatalytic activity, ACS Appl. Mater. Interf. 8,27642-27653, 2016.
- 4. Energy Level Matching for Efficient Charge Transfer in Ag Doped Ag Modified TiO₂ for Enhanced Visible Light Photocatalytic Activity, J. Alloys and Compounds , 794, 662-671, 2019

Self-cleaning performance of modified titania coated fabric under outdoor light illumination.

